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1.0 INTRODUCTION 
Reclamation’s Stanislaus Policy Group has expressed an interest in understanding the 
reoccurrence intervals of critical droughts in the Stanislaus Basin.  Such information is 
expected to support a decision on whether a New Melones Revised Plan of Operation 
should be based on the critical drought observed during 1928-1934 or 1987-1992.     

Framing questions: 

1. What are the reoccurrence intervals of 6-year droughts of varying severity in the 
Stanislaus Basin? 

2. How do these reoccurrence intervals change if the analysis is based on an earlier 
period of record (e.g., pre-operations hydrologic record)? 

3. How do these reoccurrence intervals change if the analysis is based on a 
precipitation- rather than a runoff-defined drought? 

For question 1, the focus is on 6-year drought reoccurrence rather than 7-year drought 
reoccurrence (i.e. similar in duration to the 1928-1934 “drought”).  The 6-year duration 
was selected mainly because it coincides with the 1987-1992 duration.  Also, review of 
1928-1934 annual Stanislaus runoff sequence (Figure 1) shows that the 1928-1934 
drought might actually be described as back-to-back droughts (i.e. a 4-year drought and a 
2-year interrupted by a wetter year in 1932), rather than as a 7-year drought.     

For question 2, it reasoned that when New Melones construction was being completed, an 
original plan of operations was still being developed.  Planning at that time was informed 
by hydrologic observations that did not include the severe 1987-1992 drought.  It is of 
interest to understand the severity of the 1987-1992 relative to this pre-operations 
understanding of hydrology.   

For question 3, it is reasoned that as multi-year droughts persist, the runoff response to 
precipitation may decay as basin infiltration potential increases.  Thus, a normal 
precipitation year might produce less runoff if the given year follows multiple dry years 
rather than a wet year.   

The remainder of this memorandum is organized as follows: 

• Section 2.0 – methodology for assessing drought reoccurrence.   
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• Section 3.0 – description of cases that were studied, varying by basis period and 
whether the drought is defined relative to precipitation or runoff observations.   

• Section 4.0 – results and discussion on the framing questions.   

• Section 5.0 – analysis limitations. 

• Section 6.0 – summary.  

Supplemental details on the methodology are provided in Appendices A and B.  
Supplemental results graphics for each of the case studies are provided in Appendix C. 

 

2.0  METHODOLOGY 
The methodology is designed to reveal observed and theoretical probabilities of drought 
reoccurrence, given either a runoff- or precipitation-basis for defining drought.  The 
methodology includes three primary steps: 

• Define drought. 

• Analyze drought reoccurrence based on observed flow data. 

• Analyze drought reoccurrence based on synthetic flow data modeled during a 
longer period, where the flow model is designed to produce a synthetic flow time 
series exhibiting statistical consistency with the observed flow time series. 

 

2.1 Drought Definition  

Droughts can be described as meteorological or hydrological phenomena.  They are often 
measured relative to median conditions, and can be expressed in terms of spell (i.e. 
duration of below-median conditions), severity (i.e. cumulative deficit during spell), or 
intensity (i.e. severity divided by spell) (Frick et al. 1990).  Both meteorological and 
hydrologic droughts are considered in this analysis, with each consistently defined as 
severity during several predetermined durations:  2-, 3-, 4-, 5- and 6-year spells.  Grant it, 
only the results from studying 6-year droughts are used to address the framing questions.  
However, additional context for the 6-year drought reoccurrence is provided by also 
studying 2- to 5-year droughts.   

To illustrated subsequent methodology steps, consider hydrologic drought defined as 
severity relative observed annual “full-natural” flow in the Stanislaus River at Goodwin 
(Figure 1).  These data are reported by the California Data Exchange Center 
(http://cdec.water.ca.gov/, station I.D: SNS).  Flow data from water years 1901-2004 are 
shown (N = 104). 

 

2.2 Drought Analysis based on Observed Data 
The methodology to compute reoccurrence distributions for the various assumed drought 
spells is as follows: 
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• from the observed time series with N years of data, compute running n-year sums 
of observed annual flow, where n = 2, 3 … 6 years.  The reporting year for the n-
year sum is the end-year of the sum. 

• compute running n-year deficits relative to respective median n-year sums. 

• compute rank-based return-period (RP) plotting positions, where: 

 (1)   
( )

ranknNRP
nNrank
/)1(

11
+−=

+−= K

• Sort running n-year deficits from largest surplus (i.e. most negative “deficit”) to 
largest deficit (i.e. most positive deficit) and plot versus return-period (Figures 2-
6).  The plots show drought reoccurrence distributions illustrating the “observed” 
return periods of the assumed n-year drought severity. 

• On each n-year curve, plot several notable observed droughts to provide a sense 
for how historical droughts rate within the observed distribution.  In the case of 
this example, notable observed droughts include those of n-year duration ending 
on 1931, 1934, 1977, 1990, 1991, 1992, and 1994. 

Since the analysis is based on N=104 years of observations, the worst drought of record 
for each n-year duration would have an observed return-period of (104-n+1) years.  For 
example, Figure 6 might be used to support the statements:   

• The 6-year drought ending on 1992 has a severity of 3971 TAF and might be 
expected to occur once in every 99 years. 

• The 6-year drought ending on 1934 has a severity of 3016 TAF and might be 
expected to occur once in every 50 years.    

These statements are only true if we can assume that the observed flows from 1901-2004 
represent the true distribution of Stanislaus annual flow.  This assumption is challenged 
in the next analysis step.   

 

2.3 Drought Analysis based on Synthetic Data 
In the example of Section 2.2, it is difficult to assess droughts having return periods of 50 
to 100 years because such episodes would only have infrequent or singular occurrence in 
the observed record (i.e. N=104 years).  Given this, it is assumed that the reoccurrence 
distributions of Figures 2-6 and observed return periods of the notable droughts may be 
inaccurate.  To test this assumption, the preceding methodology was re-applied using a 
synthetic time series of Stanislaus annual flow, modeled to be statistically consistent with 
the observed data.   

To do this analysis, a synthetic flow model must be developed.  The initial model concept 
was as follows: 

(2)  Modeled flow = Explanatory Term(s) + Error,  
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where “Explanatory Term(s)” accounts for non-random flow variations and “Error” 
accounts for the random component of the flow.   

2.3.1 Synthetic Model Development – Explanatory Term: 

It is common in hydrologic time series data to find observations that are correlated with 
their own values from previous time periods (Haan 1977).  Such a phenomenon is 
referred to as auto-correlation, and varies with the “lag” between time periods.  Given 
significant auto-correlation, one might say that “persistence” exists in the hydrologic time 
series, or that the time series has “memory”.   

Using the example of Section 2.2, auto-correlation was analyzed in the Stanislaus annual 
flow time series at p-year lags, where p = 1, 2 … 6 (Figure 7).  The correlations were 
tested for statistical significance.  The hypothesis for these tests is that the true p-year lag 
correlation is zero despite the computed correlation.  This hypothesis can be rejected at a 
specified level of confidence.  A 95% level of confidence was used in this analysis, and 
in this example leads to rejection of the hypothesis for only the 6-year lag condition.  
Thus, only a lag-6 year auto-regressive variable was retained for further consideration in 
flow model development.  

The next step was to graphically and statistically analyze the lag-6 relationship (Figure 
8).  Statistically, the annual flow from 6-years ago explains very little of the current 
year’s flow variability (r-square = 0.04).  Based on this result, it appears that the basis for 
including a lag-6 auto-regressive Explanatory Term in the model is weak.  Consequently, 
model development proceeds in this example with omission of the Explanatory Term.     

2.3.2 Synthetic Model Development – Error Term:  

Given results from the preceding discussion, the synthetic flow model can be simplified: 

(3)  Modeled flow =  Error, 

In this case, there is no need to isolate the random component of the observed time series; 
the entire time series is treated as the random component.  The model is then constructed 
and applied as follows, understanding the flow time series to be a random variable:  

(a) treat the flow time series as a “data pool” and fit a probability density function 
(PDF) to the data.  Convert the PDF into a cumulative distribution function 
(CDF). 

(b) construct an M-period time series of randomly sampled values from a uniform 
distribution between 0 and 1.  Treat these values as sampling probabilities.  

(c) construct an M-period time-series of synthetic flow values by sampling from the 
cumulative distribution function from (a) at the sampling probabilities from (b).   

The synthetic flow period (M) should be far greater than the observed flow period (N).  
Specifying the distribution fit in (a) and applying it in (c) requires some judgment (see 
Appendix A for details).   

Continuing with the example from Section 2.3.1, the approach for Error modeling was 
implemented with M=100,000 years and with a nonparametric approach to assuming the 
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PDF (see Appendix A).  The observed data’s distribution (i.e. a histogram), the fitted 
PDF, and the PDF converted into a CDF are shown, respectively, on Figures 9-11.   

The reasonability of the synthetic flow time series was then judged by plotting century 
time-slices from the synthetic series with an overlay of the observed series.  Doing this 
with our example shows that the synthetic data spread and variability is comparable to 
observed (Figure 12).  Also, a re-generation of the PDF and CDF based on the synthetic 
rather than observed data suggests that the sampling procedure produces a synthetic flow 
distribution that is comparable to observed (Figures 13 and 14).   

2.3.3 Drought Analysis on the Modeled Synthetic Flow:   

The drought-analysis methodology of Section 2.2 was applied to the synthetic flow data 
to reveal synthetic reoccurrence distributions for n-year droughts (Figures 15-19).  On 
each n-year curve, the notable observed n-year droughts from Figures 2-6 are also shown 
as an overlay.  These results support the following types of statements:   

• The 6-year drought ending on 1992 has a severity of 3971 TAF and might be 
expected to occur once in approximately 450 years. 

• The 6-year drought ending on 1934 has a severity of 3016 TAF and might be 
expected to occur once in approximately 50 years.    

In general, the most extreme, observed, 5- and 6-year droughts appear to have larger 
return periods according to the synthetic reoccurrence distributions (Figures 18-19) 
compared to return periods according to the observed reoccurrence distributions (Figures 
5-6).   

 

3.0 APPLICATION 
The methodology was applied for several cases varying by drought definition and period 
of observed record: 

• Case A - Flow1:  Based on annual full-natural flow in the Stanislaus River during 
WY1901-2004 (Figure 1)  (data i.d. SNS on the California Data Exchange Center 
(CDEC) at http://cdec.water.ca.gov). 

• Case B - Flow2:  Based on annual full-natural flow in the Stanislaus River during 
WY1901-1980. 

• Case C - Flow3:  Based on annual full-natural flow in the Stanislaus River during 
WY1906-2003. 

• Case D - PrecipSOR:  Based on annual precipitation amount at station “Sonora 
RS” (CDEC i.d. SOR) during WY1906-2003. 

• Case E - PrecipYSV:  Based on annual precipitation amount at station “Yosemite 
Headquarters” (CDEC i.d. YSV) during WY1906-2003. 

• Case F - PrecipNFR:  Based on annual precipitation amount at station “North 
Fork R.S.” (Upper San Joaquin Basin, CDEC i.d. NFR) during WY1906-2003. 

1/11/06 Draft 5 



• Case G – PrecipIndex1:  Based on annual precipitation index (Appendix B) 
representing stations spanning the American to Upper San Joaquin basins during 
WY1906-2003 (CDEC i.d. CLF, AUB, PCV, FLD, SOR, NFR, YSV).   

• Case H – PrecipIndex2:  Based on annual precipitation index (Appendix B) 
representing stations spanning the Stanislaus to Upper San Joaquin basins during 
WY1906-2003 (CDEC i.d. SOR, NFR, YSV). 

The framing questions are addressed by considering results from the following cases:  
question 1 – collectively consider results from Cases A and C; question 2 – compare 
results between Cases A and B; question 3 – compare results between Case C and the 
collective of Cases D-H.  For each case, a standard set graphics was produced (i.e. 
Figures 1-19).  Case A results are depicted by Figures 1-19.  Graphics for Cases B-H are 
provided in Appendix C  

 

4.0 RESULTS  
Tables 1 and 2 summarize case-specific results on observed and synthetic reoccurrence of 
the historical 6-year droughts ending on 1934 and 1992. 

Table 1:  Observed Reoccurrence Interval of 6-Year Droughts (Years) 

Case Description 1929-1934 Drought 1987-1992 Drought
A Flow1 50 99 
B Flow2 75 n/a (1)

C Flow3 50 93 
D PrecipSOR 31 93 
E PrecipNFR 47 93 
F PrecipYSV 31 47 
G PrecipIndex1 47 93 
H PrecipIndex2 47 93 

Notes: 
(1)  Period of observed record was WY1901-1980 and did not include this drought. 

Table 2:  Synthetic Reoccurrence Intervals of 6-Year Droughts (Years) 

Case Description 1929-1934 Drought 1987-1992 Drought
A Flow1 50 433 
B Flow2 67 (1) 719 (1)

C Flow3 36 258 
D PrecipSOR 25 199 
E PrecipNFR 53 68 
F PrecipYSV 20 23 
G PrecipIndex1 49 56 
H PrecipIndex2 46 108 

Notes: 
(1)  The 1929-1934 and 1987-1992 droughts defined in Case A were overlaid on the synthetic reoccurrence 
distributions of Case B to arrive at these synthetic reoccurrence intervals. 
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Discussion of results in relation to the framing questions: 

• Question 1:  based on a hydrologic drought definition, the apparent reoccurrence 
of the 1987-1992 drought appears to be approximately once in every 250 to 450 
years.  In contrast, the apparent reoccurrence of the 1929-1934 drought appears 
to be once in every 30 to 50 years. 

• Question 2:  staying with the hydrologic drought definition, truncation of the 
period of observed record from WY1901-2004 to WY1901-1980 leads to a 
greater apparent reoccurrence interval for both the 1929-1934 and 1987-1992 
droughts.  The apparent reoccurrence of the 1987-1992 drought increases to as 
much as once in approximately 700 years. 

• Question 3:  switching to the precipitation drought definition, the apparent 
reoccurrence of the 1987-1992 drought is less than the reoccurrence based on 
runoff-drought (Case C).  For example, the station-based precipitation definitions 
led to reoccurrence estimates of once in every 199 years at Sonora, once in every 
68 years at North Fork San Joaquin, and once in every 23 years at Yosemite 
Valley.  The region-based precipitation definitions led to reoccurrence estimates 
of once in every 56 to 108 years, with the reoccurrence appearing greater as the 
index reflected relatively more influence from the Sonora station.   

For precipitation-based drought, it is interesting to note how the results depended on 
station locations (i.e. Cases D-F in Table 2).  A rank-percentile analysis of annual 
precipitation amounts from these stations during 1906-2003 (shown on Figures D1, E1 
and F1 in Appendix C) reveals that the dryness relative to station-specific variability was 
more persistent at the Sonora gage than at the other two (Table 4). 

Table 4: Rank-Percentile of Annual Precipitation Amounts relative to 1906-2003 Record 

Station Name (I.D.) (1)Water 
Year Sonora R S (SOR) North Fork R S (NFR) Yosemite Headquarters (YSV) 
1987 3 4 4 
1988 6 18 16 
1989 27 28 33 
1990 20 15 29 
1991 8 27 43 
1992 25 38 35 
Notes: 
(1) California Data Exchange Center (http://cdec.water.ca.gov) 
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5.0  LIMITATIONS 
The synthetic return periods computed in this analysis are sensitive to a number of 
factors, including:   

• choice of drought definition,  

• procedure of drought measurement,  

• assumptions in synthetic flow and precipitation modeling,  

• decision in synthetic flow and precipitation modeling to constrain sampling so 
that the fitted distribution was not sampled at probabilities less than 0.01 

• decision in synthetic flow and precipitation modeling to generate synthetic record 
of 100,000 years rather than a longer period of some other duration.   

• quality of underlying flow and precipitation data 

The first two limitations can be regarded as caveats for this analysis.  The analysis could 
be repeated with a different drought definition and method of measurement.   

The third limitation could be explored by a more exhaustive survey of potential synthetic 
flow models.  It is possible that a superior synthetic flow model could be identified.  
However, it is not expected that another synthetic flow model would affect the conclusion 
from this analysis that there is significant reoccurrence difference between the 1929-1934 
and 1987-1992 droughts.   

The fourth limitation leads to a synthetic flow time series that when subjected to 
nonparametric density fitting, has anomalous probability assignment at the flow 
associated with the 0.01 cumulative probability (Figure 13).  However, this effect on the 
synthetic PDF does not seem to create a synthetic CDF that differs significantly CDF fit 
to observed data (Figure 14).  Thus, the results seem benign to this limitation.   

To explore sensitivity to the fifth limitation, the random sequence of sampling 
probabilities used to generate Case C and D was permuted 7 times.  The resultant range 
of synthetic reoccurrence of the 1987-1992 precipitation drought (Case D) was 186 to 
212 years with a median of 198 years.  For runoff drought (Case C), the range was 232 to 
284 with a median of 252 years.  Thus, the sampling uncertainty interval is approximately 
+/- 15 years for the precipitation droughts and +/- 25 years for the runoff droughts. 

Finally, it is necessary to acknowledge the sixth limitation that this analysis assumes 
accurate annual precipitation measurements at the surveyed CDEC stations, and accurate 
estimates of annual full natural flow at Goodwin (also as reported by CDEC).  Quality 
review of these data was not scoped in this analysis. 
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6.0  SUMMARY 
A drought reoccurrence analysis for the Stanislaus River was conducted.  Drought was 
defined relative to Stanislaus flow and regional precipitation observations.  The analysis 
was repeated for numerous cases:  cases A-C using annual flow observations but from 
different periods of record (i.e. 1901-2004 (information to support modern-day planning), 
1901-1980 (information that would have supported New Melones pre-operations 
planning), and 1906-2003 (the period coinciding with available precipitation data)), and 
cases D-H using annual precipitation station and index observations. 

Drought was measured by severity (i.e. cumulative deficit measured relative to median 
condition during the period of record).  Drought severity was assessed for 2-year to 6-
year spells, with framing questions based on results from the 6-year drought analyses.   
Reoccurrence intervals for droughts were first evaluated against observed data and then 
again against synthetic data in an effort to analyze a longer period of record   The 
synthetic data were modeled to be statistically consistent with the observed data. 

Results from Cases A-H were used to address the three questions from the introduction.  
If drought is defined by Goodwin flow during 1906-2003 (Case C), then the 1987-1992 
drought could be expected to reoccur once in every 233 to 283 years based on results 
from Section 4 and the estimated sampling uncertainty of Section 5.  However, this range 
of reoccurrence is sensitive to the period of observed record (Cases A, B, and C).  For 
example, ignoring post-1980 observations suggests a reoccurrence interval that is 
significantly greater.   

If drought is defined by Sonora precipitation rather than Goodwin flow, then the 1987-
1992 drought could be expected to have a reduced reoccurrence interval (i.e. once in 
every 184-214 years, based on Case D results from Section 4 and the estimated sampling 
uncertainty of Section 5.  The fact that the precipitation-based reoccurrence estimate is 
less than the runoff-based estimate supports the reasoning behind framing question 3 (i.e. 
that runoff response to precipitation might decay as multi-year droughts persist).  

Limitations on this analysis include assumptions related to drought definition, drought 
measurement, synthetic flow modeling, model application, and data.     
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Appendix A – On Parametric and Nonparametric Distribution Fitting 
 

In this analysis (Memorandum Section 2.3.2), the random variations in synthetic flow are 
modeled by randomly sampling from the observed flow, assuming that it is a random 
variable.  To accomplish this, a distribution must be identified to describe the range and 
variation of flow as a random variable.  Parametric or nonparametric rules for distribution 
fitting may be applied.  Ultimately, a nonparametric approach was adopted.  However 
several parametric distributions were initially considered, as explained below.   

A.1  Parametric Distributions:   

In a “parametric” specification, the overall distribution function is assumed to display an 
expected form (e.g., Normal distribution appearing as a “bell-curve”, or Gamma 
distribution appearing as a skewed “bell-curve”).  Parametric distributions can be fully 
described based on statistics derived from their underlying observations. 

The feasibility of fitting the “random” observed flow to a Normal distribution was 
assessed using (a) a Normal probability plot (Haan, 1977), and (b) quantitative tests of 
Normality (i.e. Komolgorov-Smirnov, Lilliefors (Wilks, 1995), and Jarque-Bera (Judge 
et al. 1988)).  On (a), the data on the Normal probability plot should closely plot along 
the line of Normality.   

For our example (results not shown), it was found that the observed annual flow data do 
not adequately fit to a Normal distribution Normality probability plot, particularly at the 
extreme flows cases.  Also the test of Normality was not successful using the Lilliefors 
and Jarque-Bera tests.  The assessment was repeated using transformed observations of 
annual flow:  square-root and natural log.  Results from Normal Probability plotting were 
more encouraging and the three quantitative tests of Normality did not rule out 
Normality.  However, both transformations produced distributions that overestimated 
annual flow in the low-flow range relative to expected values at low probabilities.  This 
was significant because it would lead to synthetic reoccurrence intervals erring high on 
return periods associated with key observed droughts.  For this reason, the transformed 
Normal distribution approach to describing the Error term was rejected. 

Other parametric distributions were also considered (e.g., Gamma and Log-Normal 
Error).  Similar problems were experienced with distribution fitting at low-flow ranges, 
and with coincidental distribution fitting at low- and high-flow ranges.  For this reason, 
parametric distribution assumptions for describing the observations’ “randomness” were 
disregarded.   

A.2  Nonparametric Distributions:

Nonparametric distributions are not required to exhibit an assumed overall shape or form 
(e.g., like a Normal distribution depicting a “bell-curve”).  Fitting a nonparametric 
distribution often leads to a more complicated probability density function on appearance.  
However, once the distribution is fit, the act of sampling values from the distribution at 
specified probabilities can be completed just as easily as if the distribution had been fit 
parametrically.  Moreover, nonparametric distribution fitting often fares better than 
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parametric distribution fitting when trying to coincidentally fit the distribution to 
observed high- and low-flow cases.       

Fitting a nonparametric distribution requires adopting a kernel function that relates a 
single case to the overall probability distribution.  Mathematically, the following steps 
occur: 

• Begin with the given pool of data to which the distribution will be fit (e.g., the 
Stanislaus annual flow time series from 1901-2004, illustrated in Figure 1 of the 
Memorandum). 

• Choose an estimation range within which the nonparametric probability 
distribution will be estimated.  The estimation range should at least bracket the 
given pool of data and ideally include a buffer beyond the data extremes.  The 
buffer is subjective and does not affect distribution fitting within the estimation 
range.   

• Choose a kernel function that defines a single data case’s influence on the overall 
distribution estimate.  The kernel has two attributes:  (a) shape and (b) bandwidth.  
Generally speaking, the kernel function peaks at the value where the estimation 
range value coincides with the case value, and decays when the estimation range 
value becomes different from the case value.   

• Position N kernel functions within the estimation range.  Center each function 
over a single data case.  In our example, there are 104 data cases. 

• Compute the overall distribution estimate as the superposition of the N positioned 
kernel functions. 

On the choice of kernel functions, there are several types that may be used (e.g. Gaussian 
(or Normal), Epanechnikov, Triangular (Silverman 1986; Scott 1992)).  It has been 
shown that different kernel choices can be made equivalent by rescaling according to 
appropriate bandwidths (Lall et al. 1996).  It has also been suggested that bandwidth 
selection is the most important consideration when applying kernel density estimation 
methods (Lall et al. 1996).  Given these considerations, the following kernel assumptions 
were made: 

• Gaussian kernel function shape  

• Optimal Gaussian kernel function bandwith (Silverman, 1986). 

Equations describing the resultant probability density and “building-block” kernel 
functions are as follows: 
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where xi is an annual flow case in the data sample, is a discrete flow coordinate in the 
flow-range at which density is being estimated, N is the number of sample observations 
(i.e. 104), and h is the optimal Gaussian kernel-function bandwidth (Silverman 1986) 
computed as follows: 
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where σ is the sample standard deviation, and xi,75% and xi,25% are the 75th and 25th 
percentile flow values from the data sample. 

A.3  Applying the Nonparametric Approach for our Example:   

Revisiting the example from A.1, a nonparametric probability distribution function (PDF) 
was fit to the flow observations (Figure 10 of the Memorandum).  The PDF was then 
converted into a cumulative distribution function.  This function was evaluated relative to 
the observed, or empirical, frequency distribution (Figure 11 of the Memorandum).  The 
shapes of the empirical and nonparametric distributions are similar at the extremes, as 
desired.   
 
One problem with our example application is that the fitted PDF assigns probability to 
negative flows.  Such negative annual flows might imply net annual depletion in the 
basin measured at Goodwin, which seems unrealistic (but not impossible).  In general, it 
is expected that application of this methodology could produce a distribution function 
that “tails” at extreme values, assigning small amounts of probability to unrealistic 
conditions.  To avoid the possibility of sampling unrealistically low-value conditions and 
impairing our ability to model drought reoccurrence, a probability sampling constraint 
was imposed in the methodology (Memorandum Section 2.3.2) such that the randomly 
generated sampling probabilities were confined to be within an arbitrary range (i.e. 0.01 
to 0.99) even though they’re initially sampled from a uniform distribution between 0 and 
1.  In the example of Figure 14, such a constraint on sampling probability is designed to 
limit the sampled synthetic flow range, but not so much that the sampled range is less 
than the observed range.   
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Appendix B – Development of Regional Precipitation Indices 
 

Several factors were considered when selecting stations to describe precipitation in the 
Stanislaus Basin: 

• Location 

• Elevation 

• Scale of variability (e.g. mean and range of historical data) 

• Period of record 

On location and elevation, the index would ideally represent station observations that are 
representative of precipitation in our locale of interest (i.e. in the Stanislaus Basin above 
Goodwin).  On period of record, the index would ideally be based on as many years of 
observations as possible, and certainly include the observed droughts of 1929-1934 and 
1987-1992.  On scale of variability, it is recognized that higher elevation stations and 
more northward stations in the Sierra Nevada (from the American to the Upper San 
Joaquin Basins) tend to experience greater precipitation amounts than lower elevation 
and more southward stations, respectively.   

Station data available from the California Data Exchange Center were surveyed, 
revealing a number of stations having a common “maximum” period of record (i.e. 
WY1906-2003) and being geographically proximate to the Stanislaus Basin.  These 
stations are listed in Table B-1.   

 
Table B-1:  Precipitation Stations near the Stanislaus Basin having 1906-2003 data 
Station I.D. (1) Station Name (1) Elevation (2) Basin Location 

CLF Colfax 2400 American 
AUB Auburn 1292 American 
PCV Placerville 1850 American 
FLD Folsom Dam 350 American 
SOR Sonora R S 1749 Stanislaus 
NFR North Fork R S 2630 Upper San Joaquin 
YSV Yosemite Headquarters 3966 Merced 

Notes: 
(1) Station I.D. at the California Data Exchange Center (http://cdec.water.ca.gov) 
(2) Units in feet above mean sea level 
 
Table B-1 also indicates which stations are included in the two regional indices 
mentioned in Memorandum Section 3.0.  The thought behind developing two regional 
indices is that the mix of station selection might affect the resultant index.   

For each station, a time series of annual precipitation amounts was computed.  Regional 
index construction then proceeded with the philosophy that the index should reflect 
common “phase of variability” found among the contributing stations, while paying little 
regard to the stations’ “central tendency” and “range of variability”.  This ensures that the 
index is not dominated by stations that experience the most precipitation or the greatest 
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range of precipitation.  Instead, then index reveals common relative levels of annual 
wetness among the stations.   

The mechanics of index construction given this philosophy are as follows: 

• The annual station time series were converted into standardized station time 
series, by removing the period mean (based on WY1906-2003) and then dividing 
by the period standard deviation.   

• A principal component analysis (Haan 1977) was performed on the collection of 
standardized time series (first for the collection contributing to PrecipIndex1 and 
then to the collection contributing to PrecipIndex2).  The principal component 
analysis serves to transform the “dispersion matrix” of station time series (i.e. 
time periods as rows, stations as columns) into a matrix principal component (PC) 
“scores” time series.  The PC scores exhibit two useful characteristics:  (1) each 
PC scores time series is uncorrelated with the other PC scores time series, and (2) 
they are hierarchically arranged, with the first PC scores times series (i.e. PC1) 
explaining the most amount of original data variance in the dispersion matrix, 
PC2 explaining the next most amount, and so forth.  In this application, 
characteristic (2) is of interest to us, as PC1 is defined as the regional index.   
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Appendix C – Graphical Results 
 

Memorandum Section 3.0 describes figures generated for each of the analysis cases: 

• Case A:  Figures A1-A19 (reprint of Figures 1-19 from the memorandum) 

• Case B:  Figures B1-B19 

• Case C:  Figures C1-C19 

• Case D:  Figures D1-D19 

• Case E:  Figures E1-E19 

• Case F:  Figures F1-F19 

• Case G:  Figures G1-G19 

• Case H:  Figures H1-H19 
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